
Probabilistic Time-Dependent Models for Mobile Robot Path Planning

in Changing Environments

Stefan Loibl Daniel Meyer-Delius Patrick Pfaff

Abstract—In the context of mobile robot path planning, a
common strategy is to assume that the world is static and rely
on heuristic approaches and obstacle avoidance to deal with
the changes in the environment. When planning, not taking the
potential changes of the environment into account usually leads
to poor performances. In this paper we propose a probabilistic
model that explicitly characterizes the traversability of the
environment as a stochastic process. Furthermore, we present
a path planning approach that exploits this traversability
information to compute paths that minimize the expected travel
time of the robot. Experimental results show that by explicitly
modeling and reasoning about changes in the environment path
planning performance can be improved.

I. INTRODUCTION

Mobile robot systems must be able to deal with changes

in the environment. While navigating, they need to avoid

collisions and clear dynamic obstacles as well as replan

their routes if the planned path is blocked. This reactive

behavior, however, usually results in longer travel times. For

this reason, to improve their navigation performance, mobile

robots should be able to plan their paths trying to minimize

the expected number of collision avoidance and replanning

actions that may be encountered on the path. Consider, for

example, the roadmap shown in Figure 1. When computing

a pah from the User to the Printer, the shortest route would

take the robot through the Lab which is frequently closed.

To reduce the number of times that the robot has to replan

because it found the lab closed, we could simply remove the

path through the lab from the roadmap. This would cause the

robot to always take a longer route independently of whether

the lab is closed or not. A more founded approach would be

to model the traversability of the path through the lab and

decide whether to try the shortest route or not based on the

expected traversability according to the model.

In this paper we propose a path planning approach that

takes into account potential changes in the environment by

explicitly modeling them in the roadmap. The goal is to

find a path from an initial location to some goal location

that minimizes the expected travel time. The road network

is given as a directed graph where a node represents a

location and an edge represents a path between two locations.

We propose a model where each edge has an associated

stochastic process that describes the traversability and the

travel time at every time step of the underlying path. The

path planning problem is formulated as a Markov decision

process (MDP) where the states consist of joint locations and

arrival times, and the cost function corresponds to the travel

All authors {stefan.loibl, daniel.meyer-delius, patrick.pfaff}@kuka.com
are with the KUKA Laboratories GmbH, Ausgburg, Germany.

User

Printer

Lab

Fig. 1. The picture shows the grid map of an office environment extended
with a roadmap. The shortest route from the User to the Printer would
take the robot through the Lab which is frequently closed. The approach
described in this paper explicitly takes the traversability of the Lab into
account at the moment of planning a path.

time. An optimal policy is found by exploiting the properties

of our environment model and using dynamic programing.

The contribution of this work is twofold: a model of the

environment that explicitly characterizes changes and a path

planning approach that minimizes the expected travel time of

the robot by explicitly taking into account potential changes

in the environment. We propose a representation of the

environment that probabilistically models the traversability

and the travel time of the paths. Based on this model,

we formulate the path planning problem as a MDP and

describe an efficient approach for computing policies with

minimum expected travel times. We evaluate our approach

using synthetic and realistic data. The results show that

path planning performance can be improved by explicitly

modeling and reasoning about changes in the environment.

II. RELATED WORK

The path planning problem has been studied extensively

in the past. Shortest paths in graphs with static costs can be

found efficiently with Dijkstra’s algorithm [1] or the heuristic

A∗-Algorithm [2]. For partially known environments, Eye-

rich el al. [3] describe the stochastic variant of the Canadian

Traveler’s Problem, a path planning problem where some

roads can be blocked by adverse weather. The objective is

to find a policy with low expected travel cost. Similarly, the

D∗-Algorithm described by Stentz et al. [4] finds shortest

paths in partially known environments and is also able to

cope with changing environments. If a discrepancy between

the robots belief and the actual world is observed the costs

are updated and the path is replanned. However, these

changes are not taken into account beforehand.

Our work builds upon the work of Hall [5], who introduced

the problem of finding the minimum expected travel time

through stochastic time-dependent networks (STD networks).

The travel time of each edge is a random variable whose

distribution depends on the time. Several related problems

and applications have been treated by Miller-Hooks and Ma-

hamassani [6]. They defined efficient methods to find a least

possible time path (i.e., a strategy yielding minimum travel

time in the most favorable case). Pretolani [7] presented a

directed hypergraph formulation of a STD network where the

best strategy (time-adaptive route) corresponds to a minimum

weight hyperpath and can be found in linear time with respect

to the size of the hypergraph. He also discusses different

criteria for ranking routes.

Several problems arise when using STD networks to model

the environment of a mobile robot. In STD networks it is

assumed that each node is related to a finite set of time

steps at which it is possible to leave that node. Furthermore

there is a finite time horizon tmax and it is possible to reach

the goal node within tmax. Since a mobile robot can leave a

node at any time step (provided that the current path is not

blocked) it is hard to determine such a finite time horizon.

One possibility would be to set it to a large number (it

probably will not take a mobile robot several hours to move

from one place in an office to another), but then it is not

clear which cost has to be assigned to the nodes with time

step tmax and to which other nodes they are connected. So

although promising, STD networks can not directly be used

to model the environment of a mobile robot. In spite of that

our approach is closely related to STD networks.

Similar to our approach, Marthi [8] uses a known static

topological map where edges can be either observed free

or blocked and each edge state evolves according to a

continuous time Markov chain. In the blocked case the

state belongs to one of three types determining the average

duration the edge stays blocked. Since the robot is not able

to observe the type of the blocking obstacle the problem is

modeled as a partially observable Markov decision problem

(POMDP). The state space of a POMDP is exponential in

the number of edges and in order to make the problem

computationally tractable the so called abstract graph is

introduced which reduces the number of edges in the graph.

Whereas this approach can only be solved approximately

our formulation of the problem as MDP permits an exact

solution in polynomial time. The problem mentioned by

Marthi [8], that by modeling the uncertainty as a MDP a

robot trying to traverse a blocked edge would either leave

immediately or wait forever when the edge stays blocked

is solved by simultaneously learning the model’s parameters

while executing the plan and replanning in each node.

III. PLANNING IN CHANGING ENVIRONMENTS

Let G = 〈V,E〉 be a directed graph representing the

roadmap of the environment, where V is a finite set of nodes

(locations) and E ⊆ V ×V a set of edges (roads). Each

edge is annotated with a stochastic process characterizing

the traversability of the edge at each time step and a

probability distribution modeling the time needed to traverse

the edge (given the edge is traversable). We formulate the

path planning problem for G as an MDP 〈S,A,P,c〉, where

• S= {(i, t) | i ∈V, t ∈N0} is the state space representing

joint locations and arrival times t.

• A(i, t)=NG(i) is the action space for each state (i, t)∈ S,

where NG(i) corresponds to the set of all the neighbors

of node i in graph G.

• P
(
(j, t ′) | (i, t), j

)
is the transition model that represents

the probability of ending in location j at time t ′ after

executing action j from location i at time t. It depends

on the traversability of edge (i, j) and the travel time

distribution. We assume that the only source of uncer-

tainty in our transition model is the temporal component

of the state, the spatial component is deterministic.

Furthermore, our MDP is a so called left-right model

since no transitions are allowed to states whose arrival

times are lower or equal than the one of the current

state.

• c : S×S→N0∪{∞} is the immediate cost function that

represents the time needed for moving from one state

to another. If the corresponding transition probability is

zero, the cost is set to infinity.

Given a goal location g ∈V , we are interested in comput-

ing an optimal policy π∗ that minimizes the expected arrival

time at the goal location for every state in S. The minimum

expected arrival time C∗(i, t) for state (i, t) ∈ S is given by

C∗(i, t) = min
j∈A(i,t)

∞

∑
t ′=t+1

C∗(j, t ′)P
(
(j, t ′) | (i, t), j

)
. (1)

At a goal state (g, t), it is simply initialized to t, that is,

C∗(g, t) = t.

A. Bounding the State Space

To efficiently compute the minimum expected arrival time

using dynamic programming we assume that a time step tm
exists, such that C∗(i, tm+ t) =C∗(i, tm)+ t for all t ∈ N0.

This simply states that for time steps larger than tm the time

needed to reach the goal location does not depend on the

current time, making the optimal policy time-independent.

Let Xt be a random variable representing the traversability

of a given edge at time step t

Xt =

{

0, if the edge is traversable at time t,

1, if the edge is not traversable at time t.

We assume that the traversability of an edge is independent

of the traversability of all other edges and model Xt as a first

order homogeneous Markov process with transition matrix

A=

(
p00 p01
p10 p11

)

.

As t tends to infinity, Xt converges to a unique stationary

distribution. The time needed to converge to this distribution

is called mixing time. We follow the approach described

in [9] to analytically compute the mixing time tem for each

edge e in E and define the mixing time for the complete

graph as tm = max{tem | e ∈ E}.

B. Modeling the Travel Time of an Edge

We implicitly model the travel time for an edge e= (i, j)
(regardless of its traversability state) as a stochastic pro-

cess Yt that characterizes the probability of reaching the

destination node j after a certain number of time steps.

More specifically, P(Yt = t ′) is the probability of ending in

location j at time t ′ when starting from location i at time t.

The arrival time distribution P(Yt) is given by

P(Yt) = ∑
x∈{0,1}

P(Xt = x)P(Yt | Xt = x) , (2)

where P(Xt) corresponds to the traversability state distribu-

tion of the edge and P(Yt | Xt) is the arrival time distribution

of the edge conditioned on its traversability state. Note that

Yt−t is the travel time of the edge. If the edge is traversable,

we assume its travel time is time-independent and we use a

(discrete) Beta distribution to model the conditional arrival

time, that is, P(Yt | Xt = 0)∼ Beta(α,β ;a+ t,b+ t).
If the edge is not traversable, the conditional arrival time

distribution is computed as

P(Yt | Xt = 1) =
∞

∑
n=0

(p11)
n
p10 P(Yt+n+1 | Xt = 0) . (3)

The intuition behind (3) is that the state of the edge has to

first change before the destination node can be reached. The

expected arrival time for an edge at time step t is then given

by

E
[
Yt
]
= E

[
Yt | Xt = 0

]
+

P(Xt = 1)

1− p11
, (4)

where E
[
Yt | Xt = 0

]
represents the expected arrival time for

the edge when traversable and P(X = 1)/(1− p11) is the

expected number of time steps to wait for the edge to change

its state from not traversable to traversable.

Since we are assuming that the only source of uncertainty

in our transition model is the temporal component of the

state, the arrival time distribution P(Yt) of an edge e= (i, j)
corresponds to the transition model between the nodes asso-

ciated to the edge, that is

P
(
(j, t ′) | (i, t), j

)
= P(Yt = t ′) . (5)

C. Minimum Expected Arrival Time

To compute the minimum expected arrival time C∗(i, t)
for each state in S we first compute the minimum expected

arrival time C∗(i, tm) for each state at time tm as

C∗(i, tm) =

min
j∈A(i,t)

∞

∑
t=tm+1

(C∗(j, tm)+ t)P(Ytm = t). (6)

The equation above is obtained from (1) by replac-

ing the motion model with the arrival time distribu-

tion of the corresponding edge and from the fact that

C∗(i, tm+ t) =C∗(i, tm)+ t. Due to spatial constraints we

omit the complete derivation of the formula, but after a

series of straight forward algebraic operations, rearranging

the indexes of the sums and applying the definition of

the expected value for a random variable, we obtain the

following formula for computing the expected arrival time

for a state (i, tm):

C∗(i, tm) = min
j∈A(i,t)

C∗(j, tm)+E
[
Ytm

]
. (7)

As defined at the beginning of the section, for a goal

location g,C∗(g, tm) = tm. Setting the cost of each edges to its

expected travel times E
[
Ytm

]
− tm at time step tm, Dijkstra’s

algorithm can be used to efficiently compute the expected

arrival time at the goal location for all remaining non-goal

states at time tm.

Assuming that the expected arrival times at time t = tm
have already been computed, the expected arrival times for

time steps t < tm are computed according to (1) by iterating

backwards in time, starting at time step tm − 1. At each

state (i, t) in S only the expected arrival times at time steps

larger than t are needed, which are either already computed

or given by C∗(i, tm+ t) =C∗(i, tm)+ t.

The value of the series (1) can be exactly computed by

dividing it into a finite sum A and a series B, which can be

computed analytically:

C∗(i, t) = (8)

min
j∈A(i,t)

T

∑
t ′=t+1

C∗(j, t ′)P(Yt = t ′)

︸ ︷︷ ︸

A

+
∞

∑
t ′=T+1

C∗(j, t ′)P(Yt = t ′)

︸ ︷︷ ︸

B

.

The time step T is the maximum between tm and t∗+1

where t∗ is the largest value in the support of P(Yt | Xt = 0).
For all summands of the first part A, the minimum ex-

pected arrival time is already computed. After a series of

straight forward algebraic operations we obtain the following

formula for computing the value of the second part B:

B=

P(Xt = 1)P(Yt = t∗+1 | Xt = 1)
pT−t∗

11

1− p11
·

(

C∗(j, tm)+T +1+ t− tm+
p11

1− p11

)

. (9)

D. The Path Planning Algorithm

The pseudo-code of our path planning approach is shown

in Algorithm 1. The mixing time tm for the complete road

map is computed in line 2. In line 3 the cost for the goal

states is initialized. The optimal cost for all states at time

step tm is initialized to the stationary cost according to (7) in

line 4. After that we go backwards from time step tmax− 1

to time step 0 and compute for each node that is not a goal

the optimal cost C∗(i, t) and policy π∗(i, t) by comparing the

cost of all neighbors NG(i) of the current node i in the graph

G (lines 8 – 10).

The algorithm has a general time complexity of O(|E| ·t2m),
where |E| is the number of edges. This can easily be seen

from lines 5, 6, 8 and 9. Note that lines 6 – 15 can be run

in parallel.

Algorithm 1: Main algorithm

input : The graph G= (V,E) and the goal node g ∈V

output: The optimal cost C∗ :V ×{0, . . . , tm}→ R
+
0 and

the optimal policy π∗ :V ×{0, . . . , tm}→V

begin1

tm :=max{tem | e ∈ E};2

C∗(g, t) := t for all time steps t ≤ tm;3

Compute C∗(i, tm) according to (7);4

for t = tm−1 to 0 do5

foreach i ∈V \{g} do6

C∗(i, t) := ∞;7

foreach j ∈ NG(i) do8

c := ∑t ′∈N0
P(Yt = t ′)C∗(j, t ′);9

if c<C∗(i, t) then10

C∗(i, t) := c;11

π∗(i, t) := j;12

end13

end14

end15

end16

end17

IV. EXPERIMENTAL EVALUATION

To evaluate our approach we performed experiments on

different environment models. These models consist of two

components: a directed graph and the traversability model

of each edge in the graph. This traversability model, in turn,

consists of a Markov process characterizing the traversability

state of the edge over time and a Beta distribution corre-

sponding to the travel time for the edge.

We generated random graphs out of regular grid networks.

Starting from a random spanning tree on the grid, we

randomly selected further edges from the underlying network

to produce graphs with different edge densities.

Since the traversability model of an edge characterizes

multiple different aspects of the underlying road, we de-

fined three traversability models according to the edge’s

probability of being traversable and remaining traversable:

rarely traversable with prolonged traversability (semi-static),

frequently traversable with prolonged traversability (semi-

dynamic), and frequently traversable with brief traversability

(dynamic). Additionally, we also considered edges that were

always traversable (static). In the semi-static case the state

of an edge changes rarely, whereas in the dynamic case edge

state transitions occur frequently. The model of an edge was

assigned by randomly sampling from a discrete distribution

over the four different traversavility models. The overall

traversability of the environment was controlled by biasing

this distribution in favor of one of the classes.

A. Path Planning In Changing Environments

Figure 2 compares the performance of different path

planning approaches in different environment models. In

particular, we compare our path planning approach (STDN)

against different common approaches with respect to arrival

times at the goal. We evaluated Dijkstra’s algorithm using,

Fig. 2. Arrival times of different planners for the same environment but
with different overall traversability. The planner PP has complete knowledge
of the environment, STDN is our approach, the three planners DE, DER,
and DERM use expected values of our model to compute shortest paths, and
the planners DM, DMR, and DMRM use minimal travel times (R stands for
replanning and M for memory, i.e. remembering untraversable edges).

as static costs of the edges, the expected arrival time E
[
Ytm

]

at time tm (DE) and the minimal arrival time (DM). If during

execution, an edge of the path is not traversable, these two

approaches wait until the edge changes its state. We also

considered variations of the DE and DM approaches, namely

DER and DMR, that did replan when a non-traversable

edge was found. To mitigate the oscillating behavior typical

of replaning approaches that don’t keep record of their

actions, we also considered extensions of the DER and DMR

approaches, namely DERM and DMRM, that kept track of

the traversability state of the edges. Finally, as base line,

we considered a perfect planner (PP) that had complete

knowledge of the environment at every point in time.

We assumed that at any given state, only the traversability

of the outgoing edges could be observed. For the STDN

Planner, the traversability of the edges is initially unknown.

Additionally, we assumed that the traversability state of an

edge did not change while it was being traversed.

For all environments we selected a start and goal node set

at opposite corners of the underlying grid network and per-

formed 30 runs for each approach. The boxplots in Figure 2

correspond to the arrival times at the goal for two random

environments with different traversability models generated

out of a 10× 10 grid networks. The plots show the 95%

confidence interval of the median of the arrival times. In dy-

namic environments, where state transitions occur frequently,

the mixing time of the environment is in general rather small

reducing the advantage of the STDN planner against that of

the DE planner. A Wilcoxon rank-sum test revealed that the

arrival times of our approach were significantly lower than

the ones of all other approaches on a 1% level in semi-static

Fig. 3. Grid map and roadmap for the KUKA production site in Augsburg
with a size of 300×200 meters.

Fig. 4. Arrival times in the example environments office (left) and
production hall (right) depicted in Figure 1 and Figure 3. We compare the
performances of the perfect planner (PP), our approach (STDN), and the
Dijkstra planner using expected values of our model (DE).

and in semi-dynamic environments. Consistent results were

obtained on numerous other environments of different sizes,

densities and dynamics.

Real World Topology

We also compare the performance of the different path

planning approaches in more realistic environments. We

manually created road networks using as reference a floor

map of an office environment and an industrial production

hall. The traversability models of the edges were assigned

according to the typical dynamic of the underlying road.

Figures 1 and 3 show the floor maps with the road network

overlaid on top for these two environments. To make the

scenario more realistic, instead of a single goal, a sequence

of goal nodes was used in each run. The arrival times of the

planners PP, STDN, and DE, at the last goal node are shown

in Figure 4. Just as in the previous experiment the planning

approach presented in this paper is significantly better than

the Dijkstra planners.

Fig. 5. Online learning of the model parameters. The curves correspond to
the total variation distance for the state transition probabilities p00 and p11,
and the travel time distribution, averaged over all edges in the network.

TABLE I

ARRIVAL TIMES WHEN USING THE PARAMETER ESTIMATES OBTAINED

AFTER 100 (M1), 20000 (M2), 40000 (M3), AND 60000 (M4) TIME STEPS.

DMRM M1 M2 M3 M4 STDN

mean 2057 2349 1939 1655 1655 1065
std. 718.30 1654.97 1584.07 1071.82 307.98 90.37

B. Estimating the Model Parameters

The parameters of our model can be learned from data

collected while moving through the environment. The state

transition parameters of the traversability model can be

estimated online using the approach described in [10] and

the parameters of the travel time distributions can be updated

using the method-of-moments [11] approach.

The curves in Figure 5 show how the parameters of

the model are learned while observing the environment. In

simulation, we performed 3000 runs using our path planning

algorithm in the office environment described in the previous

experiment, each time using a randomly selected node as

goal. The traversability state and state transition probabilities

of each edge were set initially to a uniform distribution,

and the travel time distribution was set to a point mass

distribution at the minimum travel time in the support of

the underlying travel time distribution.

The curves correspond to the total variation distance

(see [12]) for the state transition probabilities p00 and p11,

and the travel time distribution, averaged over all edges in

the network. The accuracy of the learned parameters for an

edge not only depends on how often the edge is observed

but also on how long it is observed. During the first runs, the

parameter estimates are rather rough and the generated paths

frequently result in longer waiting times at untraversable

nodes. This, in turn, leads to frequent and longer observations

of the adjacent edges. This explains the rapid decrease of the

error at the beginning of the learning process. The better the

parameter estimates, the less frequent and shorter the waiting

times.

Table I shows the performance of our approach when using

the parameter estimates obtained after 100 (M1), 20000 (M2),

40000 (M3), and 60000 (M4) time steps. We compared the

arrival times against those obtained when using the ground

truth model (STDN). We also compared the results of the

DMRM approach - the best approach without any knowledge

about the underlying dynamics.

As can be seen in the figure, the performance of our

approach increases as the model parameters converge to the

ground truth. Additionally it can be seen that the number of

outliers (in both directions) also decreases. This outliers are

caused by uninformed or ”risky” decisions, that lead to short

paths that are often untraversable.

C. Computational Time

TABLE II

RUNTIME OF OUR APPROACH IN MILLISECONDS FOR ENVIRONMENTS OF

DIFFERENT SIZES AND USING DIFFERENT VALUES FOR tm .

tm = 1 tm = 10 tm = 100 tm = 1000

5×5 3 (±5) 14 (±4) 125 (±5) 2202 (±17)
10×10 17 (±4) 68 (±8) 593 (±7) 10227 (±156)
15×15 47 (±0.4) 168 (±8) 1530 (±182) 24616 (±1069)
20×20 95 (±5) 333 (±8) 2794 (±63) 46411 (±1003)

We also evaluated our approach in terms of computational

time. The experiments where performed on a standard PC

with a dual-core processor. Table II summarizes the the

average runtime (and standard deviation) in milliseconds

for 30 runs in environments of different sizes. Since the

complexity of the algorithm depends largely on the value of

the upper limit tm for the mixing time, we also compared the

computational times for different values of tm. As expected,

runtime of the algorithm scales linearly with the number

of edges and quadratically with tm. Truncating the value

of mixing time is equivalent to increasing the convergence

threshold at the moment of computing the mixing time

(see [9]). Practically tm represents the planning horizon: after

tm we assume that the stationary state of the environment has

been reached. In general, the closer tm is to its theoretical

value, the better the performance of the planner. As reference

for the computational times, the average runtime for the

office (87 nodes) and production environments (118 nodes)

for tm = 100 were, 312 and 403 milliseconds respectively.

V. CONCLUSIONS

In this paper we presented an approach to model the

environment based on the idea of road networks which

probabilistically characterize the traversability and travel

time of the roads. We described the traversability of each

road as a first order homogeneous Markov process and used

a discrete Beta distribution to model the travel times. This

extension of the standard road networks commonly used for

path planning allows us to represent relevant time-depended

information of the environment.

Based on this model, we proposed a path planning ap-

proach that takes into account potential changes in the

environment to minimizes the expected travel time. We

formulated the path planning problem as a Markov decision

process where the states consist of joint locations and arrival

times. We first computed the minimum expected travel times

in the model at its stationary state and then used dynamic

programming to compute the expected travel times for all

prior time steps.

We implemented and tested our approach using synthetic

and realistic data. The results show that the information about

the environment encoded in our model can lead to signifi-

cant path planning improvements. The results also indicate

that, by considering both the current and predicted state of

the environment, our path planning algorithm outperformed

approaches that assumed a static world. Finally we described

an approach for learning the parameters of the model online,

and showed that our approach was robust against inaccurate

models parameters. Being able to learn the model parameters

while navigating the environment together with the ability to

explicitly model and reason about potential changes in the

environment makes our approach particularly attractive for

robotic systems that need to operate over extended periods

of time.

ACKNOWLEDGMENT

This work has been partially supported by the European

Commission under contract number FP7-260026-TAPAS.

REFERENCES

[1] E. W. Dijkstra, “A Note on Two Problems in Connection with Graphs,”
Numerical Mathematics, vol. 1, pp. 269–271, 1959.

[2] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” Systems Science and Cyber-

netics, IEEE Transactions on, vol. 4, no. 2, pp. 100 –107, july 1968.
[3] P. Eyerich, T. Keller, and M. Helmert, “High-Quality Policies for

the Canadian Traveler’s Problem,” in Third Annual Symposium on

Combinatorial Search, AAAI. AAAI Publications, aug 2010, pp.
147–148.

[4] A. Stentz and I. C. Mellon, “Optimal and efficient path planning
for unknown and dynamic environments,” International Journal of

Robotics and Automation, vol. 10, pp. 89–100, 1993.
[5] R. W. Hall, “The Fastest Path through a Network with Random Time-

Dependent Travel Times,” Transportation Science, vol. 20, no. 3, pp.
182–188, Aug. 1986.

[6] E. D. Miller-Hooks and H. S. Mahmassani, “Least Expected Time
Paths in Stochastic, Time-Varying Transportation Networks,” Trans-

portation Science, vol. 34, no. 2, pp. 198–215, May 2000.
[7] D. Pretolani, “A directed hypergraph model for random time dependent

shortest paths,” European Journal of Operational Research, vol. 123,
p. 2000, 1998.

[8] B. Marthi, “Robust navigation execution by planning in belief space,”
in Proceedings of Robotics: Science and Systems, Sydney, Australia,
July 2012.

[9] D. Meyer-Delius, M. Beinhofer, and W. Burgard, “Occupancy grid
models for robot mapping in changing environments,” in Proc. of the

AAAI Conf. on Artificial Intelligence (AAAI), Toronto, Canada, July
2012.

[10] G. Mongillo and S. Deneve, “Online learning with hidden markov
models,” Neural Comput., vol. 20, no. 7, pp. 1706–1716, Jul. 2008.
[Online]. Available: http://dx.doi.org/10.1162/neco.2008.10-06-351

[11] L. P. Hansen, “Large sample properties of generalized
method of moments estimators,” Econometrica, vol. 50,
no. 4, pp. 1029–54, July 1982. [Online]. Available:
http://ideas.repec.org/a/ecm/emetrp/v50y1982i4p1029-54.html

[12] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing

times. American Mathematical Society, 2006.

